Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy ( ), and intrachain ( ) and interchain ( ) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of , a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find , and a rhombic anisotropy energy . Mean-field modeling reveals that the ground state structure hosts spin canting of , which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, , is then used to confirm these Hamiltonian parameters, while single-crystal simulations provide insight into features observed in the data. Published by the American Physical Society2025more » « less
-
We investigate the magnetic properties of antiferromagnetic diamond-lattice, , hosting a single-ion anisotropy (SIA) orientation which alternates between neighboring sites. Through neutron diffraction measurements of the compound, the ordered state spins are found to align collinearly along a pseudo-easy axis, a unique direction created by the intersection of two easy planes. Similarities in the magnetization, exhibiting spin-flop transitions, and the magnetic susceptibility in the two compounds imply that the same magnetic structure and a pseudo-easy axis is also present for . We estimate the Hamiltonian parameters by combining analytical calculations and Monte Carlo (MC) simulations of the spin-flop and saturation field. The MC simulations also reveal that the spin-flop transition occurs when the applied field is parallel to the pseudo-easy axis. Contrary to conventional easy-axis systems, there exist field directions perpendicular to the pseudo-easy axis for which the magnetic saturation is approached asymptotically and no symmetry-breaking phase transition is observed at finite fields. Published by the American Physical Society2024more » « less
-
Abstract The TAROGE-M radio observatory is a self-triggered antenna array on top of the ∼2700 m high Mt. Melbourne in Antarctica, designed to detect impulsive geomagnetic emission from extensive air showers induced by ultra-high energy (UHE) particles beyond 10 17 eV, including cosmic rays, Earth-skimming tau neutrinos, and particularly, the “ANITA anomalous events” (AAE) from near and below the horizon. The six AAE discovered by the ANITA experiment have signal features similar to tau neutrinos but that hypothesis is in tension either with the interaction length predicted by Standard Model or with the flux limits set by other experiments. Their origin remains uncertain, requiring more experimental inputs for clarification. The detection concept of TAROGE-M takes advantage of a high altitude with synoptic view toward the horizon as an efficient signal collector, and the radio quietness as well as strong and near vertical geomagnetic field in Antarctica, enhancing the relative radio signal strength. This approach has a low energy threshold, high duty cycle, and is easy to extend for quickly enlarging statistics. Here we report experimental results from the first TAROGE-M station deployed in January 2020, corresponding to approximately one month of livetime. The station consists of six receiving antennas operating at 180–450 MHz, and can reconstruct source directions of impulsive events with an angular resolution of ∼0.3°, calibrated in situ with a drone-borne pulser system. To demonstrate TAROGE-M's ability to detect UHE air showers, a search for cosmic ray signals in 25.3-days of data together with the detection simulation were conducted, resulting in seven identified candidates. The detected events have a mean reconstructed energy of 0.95 -0.31 +0.46 EeV and zenith angles ranging from 25° to 82°, with both distributions agreeing with the simulations, indicating an energy threshold at about 0.3 EeV. The estimated cosmic ray flux at that energy is 1.2 -0.9 +0.7 × 10 -16 eV -1 km -2 yr -1 sr -1 , also consistent with results of other experiments. The TAROGE-M sensitivity to AAEs is approximated by the tau neutrino exposure with simulations, which suggests comparable sensitivity as ANITA's at around 1 EeV energy with a few station-years of operation. These first results verified the station design and performance in a polar and high-altitude environment, and are promising for further discovery of tau neutrinos and AAEs after an extension in the near future.more » « less
-
null (Ed.)Abstract The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn 3 GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn 3 GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.more » « less
-
Abstract Although low-dimensionalS = 1 antiferromagnets remain of great interest, difficulty in obtaining high-quality single crystals of the newest materials hinders experimental research in this area. Polycrystalline samples are more readily produced, but there are inherent problems in extracting the magnetic properties of anisotropic systems from powder data. Following a discussion of the effect of powder-averaging on various measurement techniques, we present a methodology to overcome this issue using thermodynamic measurements. In particular we focus on whether it is possible to characterise the magnetic properties of polycrystalline, anisotropic samples using readily available laboratory equipment. We test the efficacy of our method using the magnets [Ni(H2O)2(3,5-lutidine)4](BF4)2and Ni(H2O)2(acetate)2(4-picoline)2, which have negligible exchange interactions, as well as the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2, and show that we are able to extract the anisotropy parameters in each case. The results obtained from the thermodynamic measurements are checked against electron-spin resonance and neutron diffraction. We also present a density functional method, which incorporates spin–orbit coupling to estimate the size of the anisotropy in [Ni(H2O)2(pyrazine)2](BF4)2.more » « less
An official website of the United States government
